The geometric algebra (GA) of a vector space is an algebra over a field, noted for its multiplication operation called the geometric product on a space of elements called multivectors, which contains both the scalars and the vector space . Mathematically, a geometric algebra may be defined as the Clifford algebra of a vector space with a quadratic form. Clifford's contribution was to define a new product, the geometric product, that united the Grassmann and Hamilton algebras into a single structure. Adding the dual of the Grassmann exterior product allows the use of the Grassmannâ€“Cayley algebra, and a conformal version of the latter together with a conformal Clifford algebra yields a conformal geometric algebra (CGA) providing a framework for classical geometries. In practice, these and several derived operations allow a correspondence of elements, subspaces and operations of the algebra with geometric interpretations.